

Design of a Fault-Tolerant Job-Flow Manager for Grid Environments Using

Standard Technologies, Job-Flow Patterns, and a Transparent Proxy

Gargi Dasgupta
1
, Onyeka Ezenwoye

2
, Liana Fong

3
, Selim Kalayci

4
,

S. Masoud Sadjadi
4
, and Balaji Viswanathan

1

1
IBM India Research Lab, New Delhi, India, {gdasgupt, bviswana}@in.ibm.com

2
South Dakota State University, Brookings, SD, USA, onyeka.ezenwoye@sdstate.edu

3
IBM Watson Research Center, Hawthorne, NY, USA, llfong@us.ibm.com

4
Florida International University (FIU), Miami, FL, USA, {skala001, sadjadi}@cs.fiu.edu

Abstract

The execution of job flow applications is a reality today

in academic and industrial domains. Current approaches

to execution of job flows often follow proprietary

solutions on expressing the job flows and do not leverage

recurrent job-flow patterns to address faults in Grid

computing environments. In this paper, we provide a

design solution to development of job-flow managers that

uses standard technologies such as BPEL and JSDL to

express job flows and employs a two-layer peer-to-peer

architecture with interoperable protocols for cross-

domain interactions among job-flow mangers. In

addition, we identify a number of recurring job-flow

patterns and introduce their corresponding fault-tolerant

patterns to address runtime faults and exceptions. Finally,

to keep the business logic of job flows separate from their

fault-tolerant behavior, we use a transparent proxy that

intercepts job-flow execution at runtime to handle

potential faults using a growing knowledge base that

contains the most recently identified job-flow patterns and

their corresponding fault-tolerant patterns.

Keywords: Software Design, Job-Flow Patterns, Fault

Tolerant, BPEL, JSDL, Grid Computing, Peer-to-Peer.

1. Introduction

In Grid and Cluster computing environments, unlike

traditional batch environments, individual jobs are

typically part of higher-level functional units, generally

known as job flows, which are represented by directed

graphs. Today, numerous complex academic and

commercial high-performance computing applications are

being developed as job flows that are composed of several

lower-function jobs. Due to the typical long running

nature of these jobs, the support for fault tolerance and

recovery strategy is especially important.

Very often failure of a job within a flow cannot be

treated in isolation and recovery actions may need to be

applied to preceding and dependent jobs as well. Thus

specifying flow-level recovery mechanisms become

important in such scenarios. A prevalent way to handle

flow-level compensation is to include failure management

logic at modeling time. Wei et al. [1] investigate how to

incorporate fault handling and recovery strategy for long

running jobs at development time. However, their work

requires modification of the original flow to incorporate

additional fault-handling logic. The approach also

assumes pre-knowledge of all different failure scenarios

that can arise. An alternate approach is to handle these job

failures at runtime, without explicit changes to job flow

process logic. The TRAP/BPEL [2] framework employs

this approach for stateless Web service orchestration. In

TRAP/BPEL, an intermediate proxy traps calls from the

flow engine, and on behalf of it, deploys runtime failure

handling. The advantage of this technique is that no direct

(or manual) changes need to be made to the flow at

development time.

We leverage this approach to enable runtime job failure

handling in Grid environments, with dynamic selection of

recovery policies. A big challenge in defining recovery

policies for Grid jobs is that different jobs may fail at

different stages of execution and may require different

type of recovery actions. In addition, these long-running

jobs often have non-transactional behavior and may

require elaborate cleanup phases on account of failure.

This is different from the stateless Web service model,

where service invocations are of request/response types

and recovery plans can mostly be limited to retries of the

Web service invocation. Currently, recovery mechanism

for long-running jobs requires a high degree of domain

expertise. In our work, we explore identification of

common, recurrent job flow patterns, and some common

fault-tolerance patterns that could be applied to them.

In this paper, we provide a design solution to

development of job-flow managers that uses standard

technologies to express job flows and employs

interoperable protocols for cross-domain interactions

among job-flow mangers (Section 2). We enumerate a

number of recurring job-flow patterns (Section 3) and

introduce their corresponding fault-tolerant patterns

(Section 4) to address runtime faults and exceptions. To

promote separation of concerns, we use a transparent

proxy that intercepts job-flow execution at runtime to

handle potential faults using a growing knowledge base

that contains the most recently identified job-flow patterns

and their corresponding fault-tolerant patterns (Section 5).

Finally, we compare our work to a number of related

works (Section 6), provide a short summary and a list of

future work (Section 7).

2. Design Using Standard Technologies

It is of primary importance that the design of job-flow

managers follows standard and interoperable technologies,

such that both the academic and industrial Grid

communities benefit from its flexible and open distributed

architecture. As part of the Latin American Grid [3], we

have developed a two-level distributed architecture that is

comprised of two main middleware components: the job

flow manager, responsible for maintaining concurrency

and sequencing among jobs in the flow, and the meta-

scheduler, responsible for resource selection and job

execution control. In the rest of this paper, we will focus

only on the design of the job flow manager. Details about

the meta-scheduler can be found in [4].

Figure 1 illustrates two resource domains, namely, FIU

and IBM and each are managed by their representative

job-flow manager along with a meta-scheduler. The

assumption is that within each domain, an application or a

Web-based portal sends a job flow to the job-flow

manager of its respective domain to be executed. The job-

flow manager on its turn submits individual jobs to the

meta-scheduler on its respective domain; or it sends

partial workflows (sub-flows) to a peer job-flow manager

in another domain. .

Peering relationships between job-flow managers and

between meta-schedulers is established through a set of

protocols that exchange dynamic resource capacity and

capability information. This enables them to route sub-

flows for remote execution at partner domains. The

current protocol includes three phases: connection

establishment, job-flow submission, and disconnection.

To express the job flows themselves, we chose the

Business Process Execution Language (BPEL or WS-

BPEL) [5], which has emerged as the standard workflow

language for orchestrating service-based applications.

Several production-level software from Oracle, Sun and

IBM provide core WS-BPEL engines. These engines are

virtual machines that interpret and execute WS-BPEL

grammar. The grammar models the business logic of the

workflow as a directed-graph, where the nodes represent

tasks and the edges represent inter-task dependencies, data

flow or flow control.

IBM FIU

Job-Flow

Manager

Job-Flow

Manager

Peer-to-peer

Protocols

Application

or Portal

Application

or Portal

User

Local
Resources

Local
Resources

Local
Resources

Local
Resources

Meta-

Scheduler

Meta-

Scheduler

Local
scheduler

Local
scheduler

Local
scheduler

Local
scheduler

1

2 3 4

5 6

7

1

4

6

1

2 3

5

7

12357 1 4 6

Resource

Policies

Resource

Policies

User

Figure 1: A distributed architecture for flow manager and

meta-scheduler spanning multiple domains.

Currently, the BPEL specification does not contain the

necessary semantics or support for defining long-running

jobs. Grid jobs require the richness and flexibility for

specifying varied resource requirements and system

environments. The Open Grid Forum job scheduling

working group recommends the use of Job Submission

Definition Language (JSDL) [6], for capturing a job’s

resource and environment requirements as well as data

dependencies. Ideally, we would like to use uniform

modeling and processing semantics at the flow manager

and at the meta-scheduler. However, in absence of such

unified modeling support, we explore using WS-BPEL

and JSDL to provide the combined modeling semantics

for job flow. This way individual flow tasks are

represented as JSDL jobs, woven together using a WS-

BPEL workflow. This provides us with the necessary

environment based on standardized technologies to

explore the coordination of the flow managers and meta-

scheduler for fault-handling purposes.

3. Job Flow Patterns

Figure 2 illustrates a basic set of workflow patterns [7]

that are supported by BPEL. In the sequence pattern

(Figure 2(i)), an activity in a process is enabled after the

completion of another activity in the same process.

Parallelism (Figure 2(ii)) allows activities to be executed

simultaneously. Loops (Figure 2(iii)) allow for one or

more activities to be executed repeatedly. In the choice

pattern (Figure 2(iv)), a number of branches are chosen

and executed as parallel threads. Based on these basic

patterns, more sophisticated constructs can be built [6].

Figure 2: Basic workflow patterns supported by BPEL:

(i) Sequence, (ii) Parallelism, (iii) Loop, and (iv) Choice.

In the rest of this section, we present some prevalent

patterns arising in job flows. These patterns are stored in

the flow patterns repository at the proxy and matched at

runtime. Based on the underlying functions, they are

categorized into the following:

A. Job Submission and Monitoring

A job submission by the flow manager involves

invoking the corresponding meta-scheduler interfaces to

perform the functions of submission of the job to the

resource management layer, and monitoring for any state

changes. The different submission patterns observed in

job flows include

1. Synchronous job submission: A job flow submits job

and waits for completion. In this case the submission

call does not return until job completes.

2. Asynchronous submission with polling: A job

submission call returns immediately with a job ID.

Using the job ID., the job flow polls for the job status.

3. Asynchronous submission with notification: A job flow

submits job and gets a job ID. The job flow registers for

notification by providing a callback (notification) EPR

(End-Point-Reference). The job flow waits for a

notification message, before proceeding to the next

activity.

4. Asynchronous Fire and Forget: A job flow submits

jobs and does not wait for job ID or job status (e.g., a

batch submission or a cleanup activity). In case of

failures, job IDs and job status are sent to the admin or

logged instead of invoking job flow. The difference

between this and above is:

• Job flow does not wait for completion of job and

thus might complete before such job(s) completes

• Job failure or success does not affect the job flow

business logic

B. Data Staging

Many Grid jobs require input data, and in the absence

of a shared file system, these datasets need to be staged in

at the site of execution. Usually the data staging needs to

be completed before the job can begin execution. In case

of job-flows, the data requirement could be an input to the

system or produced by the execution of a preceding job.

In the latter case, a data-dependency is created in the flow

between the producer and the consumer jobs of the data.

Thus a typical data staging pattern in job flows comprises

of staging in data from either producer jobs or from

defined inputs, followed by a job submission pattern.

There maybe several such data-staging activities, which

could occur sequentially or in parallel. Once the data

staging of all dependencies are satisfied, a job can be

submitted for execution.

C. Job Execution

Job execution completion status is captured in the job

state and in the job state transitions. Some job execution

failures are best handled by looking inside the job

definition. For example, if a job failed at 'Data Stage In'

state and status message gives which file and its reason it

failed to be staged-in (e.g., source not available or no

space on target), a possible failure handling might involve

locating a redundant copy of the file or reserving/freeing

space on target resource/filesystem before retrying the job.

We generalize this as a job flow pattern where the job

execution state helps identify failures and the JSDL job

description is used for handling such failures.

4. Fault Tolerant Patterns

In this section, we introduce a classification for

exception handling in the job-flows based on patterns

introduced in the previous section. The patterns constitute

abstract reusable concepts that can be configured for a

range of situations. By identifying these patterns, a

domain expert can develop a program generator that

captures such reusable patterns and can specify which

reusable patterns are to be used [8]. The use of a generator

in this case would facilitate separation of concerns, that is,

the separate addition of fault tolerant concerns to the job-

flow. Selected fault-tolerance patterns are then associated

with behavioral policies which define the actions to be

taken for a failed monitored task. Below, we briefly

describe each of these patterns.

Figure 3 shows a state transition diagram that models

the patterns identified in Section 3. Explicit data staging

activities may precede a job submission. Failure in any

one or more of these staging activities entails a transition

to the Failed state. A successful job submission assumes

that the job is ready to be executed. Thus, this state is

followed by either polling for job status or waits on job

status notifications. On arrival of a job completion

notification or change in job state information from the

polled job status information, transition is made to the

completed stage. At any of the submission or execution

stages, a failure would cause a transition to the failed

state. In the next few paragraphs, we describe how fault-

tolerance patterns can be applied to offer recovery from

failures at any of these stages.

Figure 3: Normal job-flow patterns.

Re-stage data: Data is re-staged upon the occurrence of

an exception either at the data staging state or during job

execution. A job execution failure may explicitly require

the data to be re-staged at the target. Data restaging can

be done (a) between the same source and target endpoints

of the original staging operation using the same

parameters; or (b) by changing the parameters (e.g., data

transport protocol, buffer size, timers, etc.) of the transfer;

or (c) by specifying a different source in case of multiple

copies of the data is present; or (d) by specifying a

different target resource when the dependent job is being

executed at a new site. Figure 4 illustrates the Re-stage

data pattern.

Figure 4: Re-stage data pattern.

Re-submit job: A job is re-submitted for execution upon

the occurrence of an exception during job submission or

execution. Jobs may be submitted to the same or a

different domain and may require modifications in job

specifications and resource requirements. Submission

failures that arise from unavailability of the meta-

scheduler can be recovered by submitting to a new domain

meta-scheduler. Execution errors require more detailed

analysis of job state, status and exit codes and a fair

amount of domain expertise for their fault-handling. For

example, a domain expert can realize from experience that

a job fails due to lack of disk space, and can update the

job definition to reflect to request additional disk space.

The failed job can be re-submitted with this new

requirement. .Figure 5 illustrates this re-submit job

pattern. The possible states to transit from here are the

Data Staging, Poll Job Status, Job Status Notification and

Failed states. .

Figure 5: Re-submit job pattern.

Re-poll status: Polling for job status is resumed upon job

re-submission. The proxy in this case, uses its co-relation

capability to transparently re-poll for the new job re-

submission. This involves translating and modifying the

original polling messages from the flow to map to the re-

polling of the newly re-submitted job. Figure 6 illustrates

the re-poll status pattern. The possible states to transit

from here are the Data Staging, Job Submission,

Completed, and Failed states.

Figure 6: Re-poll status pattern.

Re-register pattern: Proxy registers for callback job

status notification after job re-submission. As in case of

the Re-Poll status pattern, this re-registration is

transparent to the job-flow. Figure 7 illustrates the re-

register for notifications pattern. The possible states to

transit from here are the Data Staging, Job Submission,

Completed, and Failed states.

Figure 7: Re-register for notifications pattern.

Force-fail pattern: Upon job failure, no further progress

is possible and its state is changed to failed [9].

Force-complete pattern: Upon successful job

completion, its state is changed to Completed. All

subsequent activities may now be triggered [9].

5. Fault-Handling Using a Transparent Proxy

As illustrated in the left side of Figure 8, first, the

workflow is passed through a Flow Adapter that adapts

the BPEL workflow by adding fault-tolerance concerns

for specific tasks. The adaptation incorporates some

generic interceptors at sensitive join-points in the original

BPEL workflow. These join-points are certain points in

the execution path of the program at which adaptive code

can be introduced at run time. The most appropriate place

to insert interception hooks in a BPEL workflow is at the

interaction join-points (i.e., the invoke instructions). The

inserted code is in the form of standard BPEL constructs

to ensure the portability of the modified process. This

adaptation permits for the BPEL workflow behavior to be

modified at runtime [2].

Next, the BPEL based flow manager (FM) executes the

adapted workflow. Its main responsibility includes

submission of jobs to the meta-scheduler (MS) and

monitoring their progress. Additionally, the notification

interface can be used for sending back job state change

notifications to the flow manager. Based on resource

information at the meta-scheduler, it can decide to execute

a job or sub-flow locally or dispatch it to the remote

domain for execution. When a sub-flow is dispatched, its

execution is handled by the flow manager of the target

domain. Jobs dispatched from the flow manager to the

meta-scheduler can fail due to several reasons. We

broadly classify job failures at the meta-scheduler into the

following categories:

1. Job submission failure: In this case, job submission

from the flow manager to the meta-scheduler fails for

one of several reasons. For instance, the network

connection is down, the meta-scheduler is not

operational, the meta-scheduler is operational but not

accepting new submissions, etc.

2. Job execution failure: In this case the meta-scheduler

queues the job for submission, but the job fails during

execution for reasons that may include resource

unavailability, data unavailability, incorrect input

specification, internal job exceptions, output data

staging, and exceptions during cleanup.

As illustrated in the right side of Figure 8, for runtime

failure management at the level of individual jobs, we use

a transparent proxy, introduced in TRAP/BPEL [2]. In

this case, the proxy sits between the flow manager and the

meta-scheduler, and intercepts calls in both directions.

For all monitored invocations, the meta-scheduler

interface calls are replaced with calls to the proxy

interface. However, the proxy is transparent to the flow

manager and to the meta-scheduler; therefore, it imposes

no changes in either component. The proxy exposes a

generic interface to the flow manager which accepts

messages containing original invocation parameters,

marshaled by the adapter.

A transparent proxy comprises three distinct

components: (1) A monitoring component that monitors

each adapted invocation; (2) A message correlator

component, which correlates individual messages flowing

through the proxy to construct conversational state; and

(3) A recovery component that kicks in when failure is

detected for any adapted component.

An extensible repository of job-flow as well as fault-

tolerant patterns is maintained at the proxy. Job flow

patterns comprise of common artifacts that are prevalent

in job flows represented using the combination of a flow

language and a job definition language (e.g., a job

submission activity is typically followed by a monitor job

state activity). The proxy by virtue of maintaining

conversational state for each job is well equipped to detect

and handle failures. Fault-tolerant patterns comprise

common reusable recovery actions that can be specified

for job flow failures. The mapping between job-flow

patterns and fault-tolerant patterns can be manually

defined at modeling time by the application developer or

using pre-defined rule trees. Depending on the rules

specified in the tree, a choice can be made on which fault-

tolerance pattern to use depending on the job flow pattern.

Rules could also be based upon runtime information and

domain knowledge.

PatternsPatternsPatternsPatterns

PoliciesPolicies

LogsLogsLogsLogsLogs

Proxy: : Generic InvokeFM: : Notification

MS:: Job Submission
and Monitoring

MS:: Notification

Input job flow

Adapted job flow

Monitor

Recovery

Correlater

Job

Flow

Manager

(FM)

Meta-

Scheduler

(MS)

Transparent Proxy

Rule

Editor

Deployment Time Run Time

Flow

Adapter
After adaptation:

Operation:

submitJob

PartnerLink :

Proxy_JobSubmissionService

After adaptation:
Operation:

genericInvoke

PartnerLink:
Proxy_GenericInvoke

Sample Adapted job flow:

After adaptation:

Operation:

submitJob

PartnerLink :

Proxy_JobSubmissionService

Sample Adapted job flow:

After adaptation:

Operation:

submitJob

PartnerLink :

Proxy_JobSubmissionService

After adaptation:
Operation:

genericInvoke

PartnerLink:
Proxy_GenericInvoke

Sample Adapted job flow:

Input

Sample Job flow

(WS - BPEL + JSDL):

Sample Job flow

(WS - BPEL + JSDL):

Operation:

submitJob

PartnerLink :

MS_JobSubmissionService

To adapt:

Input

Sample Job flow

(WS - BPEL + JSDL):

Sample Job flow

(WS - BPEL + JSDL):

Operation:

submitJob

PartnerLink :

MS_JobSubmissionService

To adapt:

Sample Job flow

(WS - BPEL + JSDL):

Sample Job flow
(WS- BPEL + JSDL):

Operation:
submitJob

PartnerLink:
MS_JobSubmissionService

To adapt:

Start

Figure 8: The fault-tolerant architecture using a transparent proxy

6. Related Work

BPELJ [10] is an extended version of BPEL. Java

snippets can be included in BPEL processes for business

logic or fault-tolerance concerns. This approach has

portability problem, since it needs a specific BPEL

engine. AdaptiveBPEL [11] follows an aspect-oriented

approach for dynamically adapting a Web service to

provide both functional and QoS customization.

Adaptation process is policy-driven similar to ours, but

this approach also needs a specially built BPEL engine.

Pegasus project [12] provides a framework for

constructing workflows and mapping these workflows

onto Grid resources. Even though Pegasus has advanced

capabilities for a better performance of workflow

execution, less is provided in fault-tolerance aspect. It

provides only remapping of an entire sub-flow in case of a

failure whatever the reason may be. The prototype

BPEL4JOB [1] also investigate how to incorporate fault

handling and recovery strategy in WS-BPEL for long

running jobs at modeling time. An alternate approach is to

handle these failures at runtime. Authors in [13] study the

impact of runtime optimizations made at the scheduler for

handling workload surges, while minimizing the

reconfiguration overhead.

7. Conclusion and Future Work

In this paper, we presented a design for a fault-tolerant

job-flow manager that can handle failures at runtime using

standard protocols, job-flow patterns and a transparent

proxy. We identified common job-flow patterns and some

reusable fault-tolerant patterns that can be used for their

recovery. We discussed the processes required at

development time for a successful runtime fault-tolerant

behavior in job flows. In future work, we plan to evaluate

our work using a comprehensive set of failure scenarios,

explore automatic generation of mapping between job-

flow patterns and fault-tolerant patterns, and study the

performance impacts of some of these fault-tolerant

patterns.

Acknowledgements

This work was supported in part by IBM, the National

Science Foundation (grants OISE-0730065, OCI-

0636031, REU-0552555, and HRD-0317692).

References

[1] W. Tan, L. Fong, and N. Bobroff. Bpel4job: a fault-

handling design for job flow management. In

Proceedings of Fifth International Conference on

Service Oriented Computing (ICSOC), 2007

[2] Onyeka Ezenwoye and S. Masoud Sadjadi.

TRAP/BPEL: A framework for dynamic adaptation

of composite services. In Proceedings of the

International Conference on Web Information

Systems and Technologies (WEBIST 2007),

Barcelona, Spain, March 2007.

[3] Rosa Badia, Gargi Dasgupta, Onyeka Ezenwoye,

Liana Fong, Howard Ho, Sawsan Khuri, Yanbin Liu,

Steve Luis, Anthony Praino, Jean-Pierre Prost,

Ahmed Radwan, Seyed Masoud Sadjadi, Shivkumar

Shivaji, Balaji Viswanathan, Patrick Welsh, and

Akmal Younis. High Performance Computing and

Grids in Action, chapter Innovative Grid

Technologies Applied to Bioinformatics and

Hurricane Mitigation. IOS Press, Amsterdam, 2007.

[4] Norman Bobroff, Liana Fong, Selim Kalayci, Yanbin

Liu, Juan Carlos Martinez, Ivan Rodero, S. Masoud

Sadjadi, and David Villegas. Enabling

interoperability among meta-schedulers. In

Proceedings of 8th IEEE International Symposium

on Cluster Computing and the Grid (CCGrid-2008),

Lyon, France, 2008.

[5] Ezenwoye, O., Sadjadi, S.M.: Composing aggregate

Web services in BPEL. In Proceedings of The 44th

ACM Southeast Conference, Melbourne, Florida

(2006).

[6] A. Anjomshoaa, M. Drescher, D. Fellows, A. Ly, S.

McGough, D. Pulsipher, and A. Savva. Job

Submission Description Language (JSDL)

Specification, Version 1.0. Global Grid Forum, 2005.

[7] Dieter Cybok. A Grid workflow infrastructure:

Research articles. Concurrency and Computation:

Practice and Experience, 18(10):1243–1254, 2006.

[8] Ian Sommerville. Software Engineering, 8
th

 Edition;

Chapter 18: Software Reuse. Addison Wesley, May

2006.

[9] N. Russell, W.M.P. van der Aalst, and A.H.M. ter

Hofstede. Exception Handling Patterns in Process-

Aware Information Systems. BPM Center Report

BPM-06-04 , BPMcenter.org, 2006.

[10] Michael Blow et al, BPELJ: BPEL for Java, A Joint

White Paper by BEA and IBM, March 2004.

[11] Erradi, A.; Maheshwari, P.; Padmanabhuni, S.

Towards a policy-driven framework for adaptive Web

services composition, Next Generation Web Services

Practices, 2005.

[12] Ewa Deelman et al. Pegasus: a Framework for

Mapping Complex Scientific Workflows onto

Distributed Systems, Scientific Programming Journal,

Vol 13(3), 2005, Pages 219-237.

[13] G. Dasgupta, K. Dasgupta and B. Viswanathan.

Data-WISE: Efficient management of data-intensive

workloads in scheduled Grid environments. To

appaer in Proceedings of IEEE/IFIP Network

Operations and Management Symposium (NOMS),

2008.

