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Abstract 

 

The execution of job flow applications is a reality today 

in academic and industrial domains. Current approaches 

to execution of job flows often follow proprietary 

solutions on expressing the job flows and do not leverage 

recurrent job-flow patterns to address faults in Grid 

computing environments. In this paper, we provide a 

design solution to development of job-flow managers that 

uses standard technologies such as BPEL and JSDL to 

express job flows and employs a two-layer peer-to-peer 

architecture with interoperable protocols for cross-

domain interactions among job-flow mangers. In 

addition, we identify a number of recurring job-flow 

patterns and introduce their corresponding fault-tolerant 

patterns to address runtime faults and exceptions. Finally, 

to keep the business logic of job flows separate from their 

fault-tolerant behavior, we use a transparent proxy that 

intercepts job-flow execution at runtime to handle 

potential faults using a growing knowledge base that 

contains the most recently identified job-flow patterns and 

their corresponding fault-tolerant patterns. 

 

Keywords: Software Design, Job-Flow Patterns, Fault 

Tolerant, BPEL, JSDL, Grid Computing, Peer-to-Peer. 

 

1. Introduction 
 

In Grid and Cluster computing environments, unlike 

traditional batch environments, individual jobs are 

typically part of higher-level functional units, generally 

known as job flows, which are represented by directed 

graphs. Today, numerous complex academic and 

commercial high-performance computing applications are 

being developed as job flows that are composed of several 

lower-function jobs. Due to the typical long running 

nature of these jobs, the support for fault tolerance and 

recovery strategy is especially important.  

 

Very often failure of a job within a flow cannot be 

treated in isolation and recovery actions may need to be 

applied to preceding and dependent jobs as well. Thus 

specifying flow-level recovery mechanisms become 

important in such scenarios. A prevalent way to handle 

flow-level compensation is to include failure management 

logic at modeling time.  Wei et al. [1] investigate how to 

incorporate fault handling and recovery strategy for long 

running jobs at development time.  However, their work 

requires modification of the original flow to incorporate 

additional fault-handling logic. The approach also 

assumes pre-knowledge of all different failure scenarios 

that can arise. An alternate approach is to handle these job 

failures at runtime, without explicit changes to job flow 

process logic. The TRAP/BPEL [2] framework employs 

this approach for stateless Web service orchestration. In 

TRAP/BPEL, an intermediate proxy traps calls from the 

flow engine, and on behalf of it, deploys runtime failure 

handling. The advantage of this technique is that no direct 

(or manual) changes need to be made to the flow at 

development time.  

 

We leverage this approach to enable runtime job failure 

handling in Grid environments, with dynamic selection of 

recovery policies. A big challenge in defining recovery 

policies for Grid jobs is that different jobs may fail at 

different stages of execution and may require different 

type of recovery actions.  In addition, these long-running 

jobs often have non-transactional behavior and may 

require elaborate cleanup phases on account of failure. 

This is different from the stateless Web service model, 

where service invocations are of request/response types 

and recovery plans can mostly be limited to retries of the 

Web service invocation.  Currently, recovery mechanism 

for long-running jobs requires a high degree of domain 

expertise. In our work, we explore identification of 

common, recurrent job flow patterns, and some common 

fault-tolerance patterns that could be applied to them.   

 

In this paper, we provide a design solution to 

development of job-flow managers that uses standard 

technologies to express job flows and employs 

interoperable protocols for cross-domain interactions 

among job-flow mangers (Section 2). We enumerate a 

number of recurring job-flow patterns (Section 3) and 



  

introduce their corresponding fault-tolerant patterns 

(Section 4) to address runtime faults and exceptions. To 

promote separation of concerns, we use a transparent 

proxy that intercepts job-flow execution at runtime to 

handle potential faults using a growing knowledge base 

that contains the most recently identified job-flow patterns 

and their corresponding fault-tolerant patterns (Section 5). 

Finally, we compare our work to a number of related 

works (Section 6), provide a short summary and a list of 

future work (Section 7). 

 

2. Design Using Standard Technologies 
 

It is of primary importance that the design of job-flow 

managers follows standard and interoperable technologies, 

such that both the academic and industrial Grid 

communities benefit from its flexible and open distributed 

architecture. As part of the Latin American Grid [3], we 

have developed a two-level distributed architecture that is 

comprised of two main middleware components: the job 

flow manager, responsible for maintaining concurrency 

and sequencing among jobs in the flow, and the meta-

scheduler, responsible for resource selection and job 

execution control. In the rest of this paper, we will focus 

only on the design of the job flow manager. Details about 

the meta-scheduler can be found in [4]. 

 

Figure 1 illustrates two resource domains, namely, FIU 

and IBM and each are managed by their representative 

job-flow manager along with a meta-scheduler. The 

assumption is that within each domain, an application or a 

Web-based portal sends a job flow to the job-flow 

manager of its respective domain to be executed. The job-

flow manager on its turn submits individual jobs to the 

meta-scheduler on its respective domain; or it sends 

partial workflows (sub-flows) to a peer job-flow manager 

in another domain. .  

 

Peering relationships between job-flow managers and 

between meta-schedulers is established through a set of 

protocols that exchange dynamic resource capacity and 

capability information. This enables them to route sub-

flows for remote execution at partner domains. The 

current protocol includes three phases: connection 

establishment, job-flow submission, and disconnection.  

 

To express the job flows themselves, we chose the 

Business Process Execution Language (BPEL or WS-

BPEL) [5], which has emerged as the standard workflow 

language for orchestrating service-based applications. 

Several production-level software from Oracle, Sun and 

IBM provide core WS-BPEL engines. These engines are 

virtual machines that interpret and execute WS-BPEL 

grammar. The grammar models the business logic of the 

workflow as a directed-graph, where the nodes represent 

tasks and the edges represent inter-task dependencies, data 

flow or flow control.   
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Figure 1: A distributed architecture for flow manager and 

meta-scheduler spanning multiple domains. 

 

Currently, the BPEL specification does not contain the 

necessary semantics or support for defining long-running 

jobs. Grid jobs require the richness and flexibility for 

specifying varied resource requirements and system 

environments. The Open Grid Forum job scheduling 

working group recommends the use of Job Submission 

Definition Language (JSDL) [6], for capturing a job’s 

resource and environment requirements as well as data 

dependencies. Ideally, we would like to use uniform 

modeling and processing semantics at the flow manager 

and at the meta-scheduler. However, in absence of such 

unified modeling support, we explore using WS-BPEL 

and JSDL to provide the combined modeling semantics 

for job flow. This way individual flow tasks are 

represented as JSDL jobs, woven together using a WS-

BPEL workflow. This provides us with the necessary 

environment based on standardized technologies to 

explore the coordination of the flow managers and meta-

scheduler for fault-handling purposes. 

 

3. Job Flow Patterns 
 

Figure 2 illustrates a basic set of workflow patterns [7] 

that are supported by BPEL. In the sequence pattern 

(Figure 2(i)), an activity in a process is enabled after the 

completion of another activity in the same process. 

Parallelism (Figure 2(ii)) allows activities to be executed 

simultaneously. Loops (Figure 2(iii)) allow for one or 

more activities to be executed repeatedly. In the choice 

pattern (Figure 2(iv)), a number of branches are chosen 

and executed as parallel threads. Based on these basic 

patterns, more sophisticated constructs can be built [6]. 

 

 
 

Figure 2: Basic workflow patterns supported by BPEL: 

(i) Sequence, (ii) Parallelism, (iii) Loop, and (iv) Choice. 



  

In the rest of this section, we present some prevalent 

patterns arising in job flows.  These patterns are stored in 

the flow patterns repository at the proxy and matched at 

runtime. Based on the underlying functions, they are 

categorized into the following: 

A. Job Submission and Monitoring 

A job submission by the flow manager involves 

invoking the corresponding meta-scheduler interfaces to 

perform the functions of submission of the job to the 

resource management layer, and monitoring for any state 

changes.  The different submission patterns observed in 

job flows include 

1. Synchronous job submission: A job flow submits job 

and waits for completion. In this case the submission 

call does not return until job completes. 

2. Asynchronous submission with polling: A job 

submission call returns immediately with a job ID.  

Using the job ID., the job flow polls for the job status.  

3. Asynchronous submission with notification: A job flow 

submits job and gets a job ID. The job flow registers for 

notification by providing a callback (notification) EPR 

(End-Point-Reference). The job flow waits for a 

notification message, before proceeding to the next 

activity.   

4. Asynchronous Fire and Forget:  A job flow submits 

jobs and does not wait for job ID or job status (e.g., a 

batch submission or a cleanup activity). In case of 

failures, job IDs and job status are sent to the admin or 

logged instead of invoking job flow. The difference 

between this and above is: 

• Job flow does not wait for completion of job and 

thus might complete before such job(s) completes 

• Job failure or success does not affect the job flow  

business logic 

B. Data Staging  

Many Grid jobs require input data, and in the absence 

of a shared file system, these datasets need to be staged in 

at the site of execution.  Usually the data staging needs to 

be completed before the job can begin execution.  In case 

of job-flows, the data requirement could be an input to the 

system or produced by the execution of a preceding job. 

In the latter case, a data-dependency is created in the flow 

between the producer and the consumer jobs of the data.  

Thus a typical data staging pattern in job flows comprises 

of staging in data from either producer jobs or from 

defined inputs, followed by a job submission pattern.  

There maybe several such data-staging activities, which 

could occur sequentially or in parallel.  Once the data 

staging of all dependencies are satisfied, a job can be 

submitted for execution.  

C. Job Execution  

Job execution completion status is captured in the job 

state and in the job state transitions. Some job execution 

failures are best handled by looking inside the job 

definition. For example, if a job failed at 'Data Stage In' 

state and status message gives which file and its reason  it 

failed to be staged-in (e.g., source not available or no 

space on target), a possible failure handling might involve 

locating a redundant copy of the file or reserving/freeing 

space on target resource/filesystem before retrying the job.  

We generalize this as a job flow pattern where the job 

execution state helps identify failures and the JSDL job 

description is used for handling such failures. 

 

4. Fault Tolerant Patterns 
 

In this section, we introduce a classification for 

exception handling in the job-flows based on patterns 

introduced in the previous section. The patterns constitute 

abstract reusable concepts that can be configured for a 

range of situations. By identifying these patterns, a 

domain expert can develop a program generator that 

captures such reusable patterns and can specify which 

reusable patterns are to be used [8]. The use of a generator 

in this case would facilitate separation of concerns, that is, 

the separate addition of fault tolerant concerns to the job-

flow. Selected fault-tolerance patterns are then associated 

with behavioral policies which define the actions to be 

taken for a failed monitored task. Below, we briefly 

describe each of these patterns. 

 

Figure 3 shows a state transition diagram that models 

the patterns identified in Section 3.  Explicit data staging 

activities may precede a job submission. Failure in any 

one or more of these staging activities entails a transition 

to the Failed state. A successful job submission assumes 

that the job is ready to be executed. Thus, this state is 

followed by either polling for job status or waits on job 

status notifications. On arrival of a job completion 

notification or change in job state information from the 

polled job status information, transition is made to the 

completed stage.  At any of the submission or execution 

stages, a failure would cause a transition to the failed 

state.  In the next few paragraphs, we describe how fault-

tolerance patterns can be applied to offer recovery from 

failures at any of these stages.  

 
Figure 3: Normal job-flow patterns. 

 

Re-stage data: Data is re-staged upon the occurrence of 

an exception either at the data staging state or during job 

execution.  A job execution failure may explicitly require 



  

the data to be re-staged at the target.  Data restaging can 

be done (a) between the same source and target endpoints 

of the original staging operation using the same 

parameters; or (b) by changing the parameters (e.g., data 

transport protocol, buffer size, timers, etc.) of the transfer; 

or (c) by specifying a different source in case of multiple 

copies of the data is present; or (d) by specifying a 

different target resource when the dependent job is being 

executed at a new site.  Figure 4 illustrates the Re-stage 

data pattern.  

 

Figure 4: Re-stage data pattern. 

 

Re-submit job:  A job is re-submitted for execution upon 

the occurrence of an exception during job submission or 

execution.  Jobs may be submitted to the same or a 

different domain and may require modifications in job 

specifications and resource requirements. Submission 

failures that arise from unavailability of the meta-

scheduler can be recovered by submitting to a new domain 

meta-scheduler.  Execution errors require more detailed 

analysis of job state, status and exit codes and a fair 

amount of domain expertise for their fault-handling. For 

example, a domain expert can realize from experience that 

a job fails due to lack of disk space, and can update the 

job definition to reflect to request additional disk space.  

The failed job can be re-submitted with this new 

requirement. .Figure 5 illustrates this re-submit job 

pattern.  The possible states to transit from here are the 

Data Staging, Poll Job Status, Job Status Notification and 

Failed states.  .        

 
Figure 5: Re-submit job pattern. 

 

Re-poll status:  Polling for job status is resumed upon job 

re-submission. The proxy in this case, uses its co-relation 

capability to transparently re-poll for the new job re-

submission.  This involves translating and modifying the 

original polling messages from the flow to map to the re-

polling of the newly re-submitted job.  Figure 6 illustrates 

the re-poll status pattern.  The possible states to transit 

from here are the Data Staging, Job Submission, 

Completed, and Failed states.  

 
Figure 6: Re-poll status pattern. 

 

Re-register pattern: Proxy registers for callback job 

status notification after job re-submission.  As in case of 

the Re-Poll status pattern, this re-registration is 

transparent to the job-flow. Figure 7 illustrates the re-

register for notifications pattern. The possible states to 

transit from here are the Data Staging, Job Submission, 

Completed, and Failed states. 

 
Figure 7: Re-register for notifications pattern. 

 

Force-fail pattern: Upon job failure, no further progress 

is possible and its state is changed to failed [9]. 

 

Force-complete pattern: Upon successful job 

completion, its state is changed to Completed.  All 

subsequent activities may now be triggered [9]. 

 

5. Fault-Handling Using a Transparent Proxy 
 

As illustrated in the left side of Figure 8, first, the 

workflow is passed through a Flow Adapter that adapts 

the BPEL workflow by adding fault-tolerance concerns 

for specific tasks. The adaptation incorporates some 

generic interceptors at sensitive join-points in the original 

BPEL workflow. These join-points are certain points in 

the execution path of the program at which adaptive code 

can be introduced at run time. The most appropriate place 

to insert interception hooks in a BPEL workflow is at the 

interaction join-points (i.e., the invoke instructions). The 

inserted code is in the form of standard BPEL constructs 

to ensure the portability of the modified process. This 

adaptation permits for the BPEL workflow behavior to be 

modified at runtime [2]. 

 

Next, the BPEL based flow manager (FM) executes the 

adapted workflow.  Its main responsibility includes 



  

submission of jobs to the meta-scheduler (MS) and 

monitoring their progress. Additionally, the notification 

interface can be used for sending back job state change 

notifications to the flow manager.  Based on resource 

information at the meta-scheduler, it can decide to execute 

a job or sub-flow locally or dispatch it to the remote 

domain for execution. When a sub-flow is dispatched, its 

execution is handled by the flow manager of the target 

domain.  Jobs dispatched from the flow manager to the 

meta-scheduler can fail due to several reasons.  We 

broadly classify job failures at the meta-scheduler into the 

following categories: 

 

1. Job submission failure: In this case, job submission 

from the flow manager to the meta-scheduler fails for 

one of several reasons. For instance, the network 

connection is down, the meta-scheduler is not 

operational, the meta-scheduler is operational but not 

accepting new submissions, etc. 

 

2. Job execution failure: In this case the meta-scheduler 

queues the job for submission, but the job fails during 

execution for reasons that may include resource 

unavailability, data unavailability, incorrect input 

specification, internal job exceptions, output data 

staging, and exceptions during cleanup. 

 

As illustrated in the right side of Figure 8, for runtime 

failure management at the level of individual jobs, we use  

a transparent proxy, introduced in TRAP/BPEL [2]. In 

this case, the proxy sits between the flow manager and the 

meta-scheduler, and intercepts calls in both directions.  

For all monitored invocations, the meta-scheduler 

interface calls are replaced with calls to the proxy 

interface. However, the proxy is transparent to the flow 

manager and to the meta-scheduler; therefore, it imposes 

no changes in either component. The proxy exposes a 

generic interface to the flow manager which accepts 

messages containing original invocation parameters, 

marshaled by the adapter.  

 

A transparent proxy comprises three distinct 

components: (1) A monitoring component that monitors 

each adapted invocation; (2) A message correlator 

component, which correlates individual messages flowing 

through the proxy to construct conversational state; and 

(3) A recovery component that kicks in when failure is 

detected for any adapted component. 

 

An extensible repository of job-flow as well as fault-

tolerant patterns is maintained at the proxy. Job flow 

patterns comprise of common artifacts that are prevalent 

in job flows represented using the combination of a flow 

language and a job definition language (e.g., a job 

submission activity is typically followed by a monitor job 

state activity). The proxy by virtue of maintaining 

conversational state for each job is well equipped to detect 

and handle failures. Fault-tolerant patterns comprise 

common reusable recovery actions that can be specified 

for job flow failures. The mapping between job-flow 

patterns and fault-tolerant patterns can be manually 

defined at modeling time by the application developer or 

using pre-defined rule trees.  Depending on the rules 

specified in the tree, a choice can be made on which fault-

tolerance pattern to use depending on the job flow pattern. 

Rules could also be based upon runtime information and 

domain knowledge.   
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Figure 8: The fault-tolerant architecture using a transparent proxy



  

6. Related Work 
 

BPELJ [10] is an extended version of BPEL. Java 

snippets can be included in BPEL processes for business 

logic or fault-tolerance concerns. This approach has 

portability problem, since it needs a specific BPEL 

engine. AdaptiveBPEL [11] follows an aspect-oriented 

approach for dynamically adapting a Web service to 

provide both functional and QoS customization. 

Adaptation process is policy-driven similar to ours, but 

this approach also needs a specially built BPEL engine. 

Pegasus project [12] provides a framework for 

constructing workflows and mapping these workflows 

onto Grid resources. Even though Pegasus has advanced 

capabilities for a better performance of workflow 

execution, less is provided in fault-tolerance aspect. It 

provides only remapping of an entire sub-flow in case of a 

failure whatever the reason may be. The prototype 

BPEL4JOB [1] also investigate how to incorporate fault 

handling and recovery strategy in WS-BPEL for long 

running jobs at modeling time. An alternate approach is to 

handle these failures at runtime. Authors in [13] study the 

impact of runtime optimizations made at the scheduler for 

handling workload surges, while minimizing the 

reconfiguration overhead.  

 

7. Conclusion and Future Work 
 

In this paper, we presented a design for a fault-tolerant 

job-flow manager that can handle failures at runtime using 

standard protocols, job-flow patterns and a transparent 

proxy.  We identified common job-flow patterns and some 

reusable fault-tolerant patterns that can be used for their 

recovery. We discussed the processes required at 

development time for a successful runtime fault-tolerant 

behavior in job flows. In future work, we plan to evaluate 

our work using a comprehensive set of failure scenarios, 

explore automatic generation of mapping between job-

flow patterns and fault-tolerant patterns, and study the 

performance impacts of some of these fault-tolerant 

patterns.  
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